

Calculation Policy

July 2019 Update

Introduction

At Langford Village we are using the 'White Rose Hub' format as a basis for our planning. We are not following it completely but use it as a tool, to ensure effective progression through the curriculum.

We are using the White Rose Hub philosophy of:

- Fluency - the ability to recall the answers to basic mathematical facts automatically and without hesitation.
- Reasoning - this involves thinking through mathematical problems logically in order to arrive at solutions. It also involves being able to identify what is important and unimportant in solving a problem and to explain or justify a solution.
- Problem-solving - the ability (and resilience) to tackle 'real life' problems, where their maths is placed in a context and/or is presented in a different way to what they are used to. Children can apply their fluent methods and reasoning skills to tackle the problem independently or collaboratively.

Throughout the calculation policy, and during each lesson at Langford Village, you will see elements of concrete, pictorial and abstract models (C-P-A) The C-P-A method involves using actual objects for children to add, subtract, multiply or divide. They then progress to using pictorial representations of the object, and ultimately, abstract symbols. Through this process, we are able to ensure children have a clearer understanding and conceptual awareness for the maths they are learning.

In early mathematics, there are fundamental skills that it is important for children to develop as building blocks to future learning in maths, including that linked to calculation. A selection of the skills include:

- Ordinality - 'the ordering of numbers in relation to one another' - e.g. (1, 2, 3, 4, 5...)
- Cardinality - 'understanding the value of different numbers'- e.g. $7=\square 17=\square 14=2$
- Equality - 'seven is the same total as four add three' - e.g.
- Subitising - 'instantly recognizing the number of objects in a small group, without counting them' - e.g.

- One-to-one correspondence - e.g.
- Counting on and back from any number - e.g. 'five add three more totals eight'

'ten take away three totals seven'
- Using apparatus and objects to represent and communicate thinking - e.g.
(1) $2 3 4 \longdiv { 5 } 6 7 8 9 1 0$
- Maths language - using mathematical words verbally in every-day situations - e.g. 'climb up to the top' / 'climb down to the bottom'

By the end of Year 6, children will be equipped with efficient mental and written calculation methods, which they use with fluency. Decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. At whatever stage in their learning, and whatever method is being used, a secure understanding and knowledge of number facts that can be recalled fluently must still underpin children's strategies.

The aim is that when children leave Langford Village they:

- Have a secure knowledge of number facts and a clear conceptual understanding of the four calculation operations (addition, subtraction, multiplication and division)
- Have resilience and appropriate methods to tackle mathematical problems - for example through the use of jottings, diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads
- Have an efficient, reliable, written method of calculation for each operation that they are able to apply with confidence when they are unable to perform a calculation mentally
- Have a Growth Mindset in Mathematics, where they have a confidence to try and see opportunities to learn from mistakes.

Progression in Calculations

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model EYFS/Year 1	In EYFS/Year 1, children will also use songs, role-play, stories and practical play/activities to develop concept of addition.	'Cherry tree models' to demonstrate the idea of the 'whole' and 'parts' e.g. 5 is the 'whole' and $3+2$ are the 'parts'. Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 4+3=7 \\ & 10=6+4 \\ & \begin{array}{l} \text { Use the part-part whole } \\ \text { diagram as shown above } \\ \text { to move into the abstract, } \\ \text { where children can use } \\ \text { the addition and equals } \\ \text { symbols to write } \\ \text { sentences that represent } \\ \text { a calculation. } \end{array} \end{aligned}$

Adding three single digits Year 2	$4+7+6=1$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Using base 10 to combine two numbers TO + O/TO + T0 Year 2	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks or place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. $\operatorname{Eg} 32+23=$	$\)\begin{tabular}{cl} \text { Calculations } & <<f9a224df0-869b-43c9-83e6-b39550ab234f>> \\ \(21+42=\) & <<f2640017f-4afc-4696-b4cc-292206c46b95>> \\ \text { method, first } \\ \(+\underline{42}\) & <<fff6ef921-fda2-4e85-bba7-4663fc12702c>> \\ \text { Children then start to add two } \\ \text { numbers thar require bridging } \\ \text { of ten. } \end{tabular}$

Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.

536 Children are using a +85 formal written method for column addition - expanded if required, but ideally compact.

As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

72.8	£ 23.59				
+54.6	+	£	7		5
127.4		£	1		

11

2	3	.	3	6	1
	9	.	0	8	0
5	9	.	7	7	0
+	1	.	3	0	0
9	3	.	5	1	1
2	1		2		

Introduction of worded problems to help children apply to problem solving and use of reasoning to justify.

Subtraction

		This can progress all the way to counting back using two 2 digit numbers.	
Find the difference EYFS/Year 1/2	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

Part - Part Whole Model Year 1/2	Link to addition- use the part-part-whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part-part-whole model.	Move to using numbers within the part whole model.
Make 10 using the ten frame Year 1/2	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway five more so you have taken away 9 . You are left with the answer of 5 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Year 5 - Using decimals Year 6 - Using decimals up to 3 dp .	 Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.	When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup. These methods can be applied to decimals, using place value counters that represent tenths, hundredths etc. Children to see the process is the same with decimals, as it is with integers.	$\begin{array}{ccc} 728 & -582=146 \\ \text { H } & \top & \text { u } \\ { }^{7} & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Multiplication

N.B - please note that it is imperative for children to develop their fluency of recall with the times tables. Children now complete a national statutory times table test in Year 4. If a child has fluency with the tables, the use of each method is greatly improved and accurate.

| Objective and
 Strategies | Concrete | Pictorial | Abstract |
| :--- | :---: | :---: | :---: | :---: |
| Doubling | Use practical activities to show how to
 double a number. | Draw pictures to show how to double a number. | |

Counting in multiples EYFS／Year 1	\square Count in multiples supported by concrete objects in equal groups．	Use a number line or pictures to continue support in counting in multiples．	Count in multiples of a number aloud． Write sequences with multiples of numbers． $2,4,6,8,10$ $5,10,15,20,25,30$
Repeated addition EYFS／Year 1	Use different objects to add equal groups．	Use of many images to help establish that repeated counting of equal groups．	Write addition sentences to describe objects and pictures．

Grid Method/
 Partition to multiply

Year 3

Show the link with arrays to first introduce the grid method.

4 rows
of 10
4 rows
of 3
Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Calculations 4×126

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$\mathbf{2 1 0 + 3 5} \mathbf{= 2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

10	8
10	100
30	80
	30

X	$\mathbf{1 0 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0}$	$\mathbf{2}$
$\mathbf{1 0}$	10000	3000	400	20
$\mathbf{8}$	8000	2400	320	16

			This moves to the more compact method. $\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \\ \hline \end{array}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups EYFS/Year 1	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
Division as grouping Year 1/Year 2	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 12 flowers dividing into groups of 3	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$12 \div 4=3$ Divide 12 into 4 groups. How many are in each group? Counting in 4's in their mind, with fingers recording now many lots of 4 go into 3 .

	More advanced for older years is acceptable for conceptual development like 96 divided by 3 .	Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	
Division within arrays Year 2/ Year 3	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { E.g. } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Repeated subtraction Year 2/Year 3	Use of equipment like cuisinere rods above a ruler to show repeated subtraction of an equal amount. E.g. 6 divided by $2=3$ Repeated subtraction using Cuisenaire rods above a ruler. $6+2$ 3 groups of 2	Children then represent the repeated subtraction pictorially 12 divided by $4=3$ (groups) Discussions around division fact families to develop reasoning of the maths.	
Sharing with Place value counters Year 3	Sharing using place value counters 42 divided by $3=14$ 000000 000	Children to represent the place value counters pictorially	Children to be able to make sense of the place value counters and write calculations to show the process$\begin{aligned} & 42+3 \\ & 42=30+12 \\ & 30+3=10 \\ & 12+3=4 \\ & 10+4=14 \end{aligned}$
	10s 1s \circ 0000 \circ $=14$ \circ 0000		

| Division with a |
| :--- | :--- |
| remainder | | $14 \div 3=$ |
| :--- |
| Divide objects between groups and |
| see how much is left over |

	Bigger num $615 \div 5$ 1. Make 615 2. How man you make w 3. Exchange 4. How man make with 5. Exchange 6. How man make with		be completed. alue counters hundreds can d counters? for 10 tens. tens can you rs? ones. ones can you			
Long division Year 6 - Up to 4 digits by a 2 digit			$2544 \div 12$ How many 12 thousan have? Non	roups of s do we	$\begin{aligned} & 12 \left\lvert\, \frac{0}{2544}\right. \\ & \\ & \frac{12\left[\frac{02}{2544}\right.}{\frac{24}{1}} \end{aligned}$	Step one- exchange 2 housand for 20 hundreds so we now have 25 Step two- How many groups of 12 can I make with 25 hundreds? The 24 shows the The one is how many left.

	Exchange 2 thousand for 20 hundreds. $12 \stackrel{02}{\frac{2544}{24}}$ $\frac{1}{2}$ How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2. Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2	Exchange the one hundred for 10 tens. How many groups of 12 can I make with 14 tens? The 14 shows how many tens I have, the 12 is how many I grouped and the 2 is how many tens I have left. $\begin{array}{r}0212 \\ 12 \lcm{2544} \\ \frac{24}{14} \\ \frac{12}{24} \\ \frac{24}{0}\end{array}$ Exchange the 2 tens for 20 ones. The 24 is how many ones I have grouped and the 0 is what I have left

